

let's go learn!

This zine's goal is to take you from:

Once you know what's going on under the hood, you can get yourself out of any git mess.

silly git, you can't faze
me with your arcane
error messages! I know
exactly what to do.

to

fast-forward failed?
detached HEAD state??
references??? what?

"you're up to date with origin/main"
doesn't actually mean you're up to
date with the remote main branch...

If you find git confusing, don't worry! You're not alone.
It's VERY normal to be perplexed by it even if you've been using git for a long time.

you can think of commits
as a pile of diffs

you can also think of commits
as a pile of snapshots

diffs are calculated
from snapshots

commits never change

once you've made a commit,
it's set in stone:

the files in it never change
its diff never changes
its history never changes
the message/author never
change

if you combine all the
diffs together, you'll
get the current state
of the project!

current

current

diff

snapshot

snapshot

snapshot

diff

diff

START

START

commits never change because
their ID is calculated from their
contents

every file
parent(s)
message
author
timestamp

the diff is the
difference between a
commit and its parent

ooh let me calculate
that REALLY FAST!

hey what's the
diff for 3530a42?

sha1
hash 3530a42...

this is how Git is
implemented!

is git saving a NEW
COPY, EVERY TIME??

not quite! it has
some tricks!

on the next page!

(not how Git works, but
a VERY useful way to
think about commits!)

commit hashes

snapshot

snapshot

get the files in the
commit (like git checkout)

things git can do
with a commit

calculate the diff from its parent
(like git show)

look at its parents, grandparents,
etc. (like git log)

merge it with another commit
(like git merge)

$ git cat-file -p 3530a4
tree 22b920
parent 56cfdc
author Julia <julia@fake.com> 1697682215 -0500
committer Julia <julia@fake.com> 1697682215 -0500

commit message goes here

$ git cat-file -p 22b920
100644 blob 4fffb2 .gitignore
100644 blob e351d9 404.html
100644 blob cab416 Cargo.toml
100644 blob fe442d hello.html
040000 tree 9de29f src

$ git cat-file -p fe442d
<!DOCTYPE html>
<html lang="en">
<body>
<h1>Hello!</h1>

</body>
</html>

you can see for
yourself how git is
storing your files!

You just need one
command: git cat-file -p

fe442d is the sha1 hash of the
contents of the file. It's called
a "blob id". Commit and tree IDs
are hashes too.

Using a hash to identify each file
is how git avoids duplication: if the
file's contents don't change, the
hash won't change, so git doesn't
need to store a new version!

I just use git cat-file
for fun and learning,
never to get things done

(IDs are actually 40 characters)
file ID

First, get a commit ID.
You can get one from git log

read the commit

read the directory read a file and we're done!

git is CONSTANTLY
showing you diffs

git show COMMIT_ID

here's
the diff!

but I didn't
DELETE that file,
I MOVED it

in git, moving a file is the

same as deleting the old one
and adding the new one

same

deleted...
added...

git mv old.py new.py

git mv old.py new.py
git commit

git rm old.py

cp old.py new.py

git add new.py

and it makes it seem like
git thinks in terms of diffs

have you ever noticed
your git diffs

don't make sense?

git is just guessing
about your intentions

well the OLD version has old.py
and the NEW version has new.py
and they have the same contents...

takes 2 versions of the code

the algorithm:

tries to summarize it in a
human readable way

(but it doesn't always do a great job) git diff --histogram

compares them

so I guess you moved it

diff is an algorithm git has many
diff algorithms
I've been trying out
histogram because I don't
like how the default
algorithm displays the diff
when I rearrange code

how to try it out:

git diff HEAD to see
all changes you
haven't committed
git diff --cached to see
staged changes

I CONSTANTLY forget
to add new files and
then get confused
about why they didn't
get committed

gotcha: git diff only
shows unstaged changes

gotcha: git commit -a
doesn't automatically

add new files

staged (like --staged)

(like --cached)

(like --keep-index)

cache

index

it's total chaos but they're
all the same thing

git has a 2-stage commit process

tell git what you want to
stage (git add, git rm,
git mv, etc.)

make the commit with
git commit

committed
git commit

git add

git uses 3 terms
interchangeably for the

staging area

I only want to
commit my actual
changes, not all the
random debugging
code I put in

tip: you can use git add -p
to commit only certain

parts of a file

untracked
files

unstaged
changes

staged

You can use:

If your commits are "lost"
(not on a branch):

git's garbage collection will
eventually delete them

they'll become incredibly
difficult to find

For example: it's common to
never commit to main directly,
and instead commit to other
branches which you merge into
main when you're done.

The reflog records every
rebase, amended commit, pull,
merge, reset, commit, etc. You
can look at the reflog like this:

You could keep track of your
commit IDs manually:

a name (like main)

a latest commit (like 2e9ffc)
a reflog of how that branch
has evolved over time

Branches also sometimes have
a corresponding remote branch
which they "track".

every branch has 3 things

hmm, what was I working
on? oh yes, a38b997!

But most people use branches.

the only difference
between the main branch
and any other branch is

how you treat them

branches are core to how
git stores your work

theoretically you could
use git without branches

all changes to a branch
are recorded in its reflog

reflog stands for "reference log"

git will let you do literally
anything with a branch

(not re-flog)

git reflog BRANCHNAME
you can remove commits from a
branch with git reset

Git often won't protect you
from messing up your branch!

when you push/pull a branch,
the local branch name
doesn't have to match the
remote branch name

just the commits that
"branch" off

just the commit at the end

armadillomain

You can think about a Git branch in 3 different ways:

every previous commit

Even though git doesn't treat the
main branch in any special way, I
think of main differently from
other branches.

armadillomain

How this shows up in git: How this shows up in git: How this shows up in git:
It's how branches are stored
internally: a branch is fundamentally
a name for a commit ID.

This is how branches are actually
implemented in git.

armadillomain

Git DOESN'T KNOW that armadillo is
branched off of main: for all it
knows, main could be branched off of
armadillo! You need to tell it when
you merge or rebase, for example:

git checkout main
git merge armadillo

It's what git log BRANCHNAME shows
you! How git log main works:

I think of my
main branch
as these 4
commits

the latest
commit on
the branch

I think of the
armadillo branch as
these 2 commits

main

parent

parent a276f62

.git/refs/heads/main branch name

start here

ID of the latest commit on the branch

This is how I usually think about
branches: armadillo branches off main

git commit

UGH I didn't mean
to do that on main

la la la just
writing code

OMG I FORGOT I WAS
IN THE MIDDLE OF A
MERGE CONFLICT

the double brackets (()) mean "detached HEAD state"
this prompt can only happen if you explicitly
git checkout a commit/tag/remote-tracking branch

on a branch, everything is normal

in the middle of a multistep operation:
merge/rebase/cherry-pick/bisect

(main)

((2e832b3...))

((v1.0.13))

(main|CHERRY-PICK)

(main|REBASE 1/1)

(main|MERGING)

(main|BISECTING)

am I on a branch, or am I
in detached HEAD state?

decoder ring for the default git shell prompt

am I in the middle of some
kind of multistep operation?
(rebase, merge, bisect, etc.)

next page!

many git disasters are
caused by accidentally

running a command while on
the wrong branch...

... or by forgetting you're
in the middle of a
multistep operation

I always keep track
of 2 things

I keep my current branch
in my shell prompt

to me it's as important as
knowing what directory I'm in

~/work/homepage (main) $

git comes with a script to do this in
bash/zsh called git-prompt.sh, but
there are tons of ways to get this
info (run git status a lot! use a
GUI! use a different shell prompt!)

how git knows what your
current branch is: .git/HEAD

.git/HEAD is a file where git
stores either:

a branch name: the current branch

this means you don't have
a current branch. git calls
this "detached HEAD state"

a commit ID

by itself, .git/HEAD being
a commit ID is okay

it's a great way to
look at an old version
of your code!

I don't do it often,
but it's super useful!

git does it internally
during a rebase!

the only problem is that
new commits you make

can get "lost"

new commit
will go here
danger! it won't be
on any branch!

a tag

a remote-tracking branch

a commit ID

You will end up in detached
HEAD state if you checkout:

if you accidentally create
commits in detached HEAD
state, it's SUPER easy to

avoid losing them

just create a new branch!

(you can also create a branch
with git switch -c if you prefer)

git checkout -b oops

ways you can end up in
detached HEAD state

$ git checkout a3ffab9

$ git checkout v1.3

$ git checkout origin/main

the current commit HEAD

man gitrevisions

the previous commit HEAD^

3 commits ago HEAD^^^

3 commits ago HEAD~3

The full documentation (with
main@{3 days ago} & more) is at:

git has a little language
for referring to commits

git often uses the term
"reference" in error messages

"reference" is an umbrella term"reference" often
just means "branch"

5 types of references git's garbage collection
uses references to decide
which commits to delete

$ git switch asdf
fatal: invalid reference: asdf fatal: invalid reference: asdf

$ git push
To github.com:jvns/int-exposed
! [rejected] main -> main

error: failed to push some refs to
'github.com:jvns/int-exposed'

error: failed to push some refs to
'github.com:jvns/int-exposed'

in my experience, it's:

"ref" and "reference"
mean the same thing

the algorithm is:

git's garbage collection won't delete
commits for at least 2 weeks by default

all of these files
contain a commit ID,
but the way that
commit ID is used
depends on what type
of reference it is

References are files. They're almost all in .git/refs.
Here's every type of git reference that I've ever used:

(stash is a weird reference: when you run git stash, git creates a "temporary" commit.
Git stores the commits you have stashed in the stash's reflog: .git/logs/refs/stash)

well, I COULD check if the thing
we failed to push is a branch or
tag or what, and customize the
error message based on that...

seems complicated, let's
just print out "reference"94%

3%
3%
0.01%

"branch"
"tag"
"HEAD"
something else

find all references, and every
commit in every reference's reflog

find every commit in the history
of any of those commits

delete every commit that wasn't found

branches

branch name

branches:
HEAD:

.git/refs/heads/$BRANCH

.git/HEAD

.git/refs/tags/$TAG

.git/refs/remotes/$REMOTE/$BRANCH

.git/refs/stash

tags:

remote-tracking
branches:
stash:

commits in git are
usually saved forever

the three levels
of losing commits

you can find
lost commits

But even if git still has your
commits, they're not always
easy to find.

before: typo!

now it's
"lost"!

after:

annoying: the commit isn't in
the history of any branch/tag,
but it's relatively easy to find

nightmare: you need to search
every single commit to find it

disaster: it's been deleted

annoying: use the reflog
nightmare: use git fsck

disaster: impossible (but this
has never happened to me)

how commits can get lost:
git commit --amend

how commits can get lost:
git rebase

fix color
buug

parent

parent
fix color

buug

fix color
bug

main branch

main branch

feature branch
now these two
are "lost"!

main branchafter:

before:

feature branch

main branch

now it's
"lost"!

after:

how commits can get lost:
git stash drop

before:
stashed commit

main branch

stash is the only way I've seen the
"nightmare" situation happen.

main branch

Some ways commits get "lost":

git commit --amend

git rebase

git stash drop
deleting an unmerged branch

I find it very comforting to know
that git keeps my lost commits
around. How to find them:

HEAD is a tiny file that just contains
the name of your current branch

Here's an overview of the main parts of the .git folder! Don't worry if you don't understand
all this yet! We'll get to it.

a branch is stored as a tiny file
that just contains a commit ID. It's
stored in a folder called refs/heads.

ref: refs/heads/main

.git/HEAD

a commit is a small file containing
its parent(s), message, tree, and
author

tags are in refs/tags,
the stash is in refs/stash
More on page 12.

if you recognize 644 and
755 as unix permissions:
beware that they're
super restricted! only
644 and 755 are allowed

storing a new blob with
every change can get big,
so git gc periodically
packs them for efficiency
in .git/objects/pack

the files in /objects/ are
all compressed, the best
way to see them is with
git cat-file -p HASH

HEAD can also be a
commit ID, that's called
"detached HEAD state"

(actually 40 characters)75bbae4

.git/refs/heads/main

trees are small files that list the
permissions, type, ID, and name of
every file in a directory. The files
in it are called "blobs"

blobs are the files that contain
your actual code

.git/objects/75/bbae4
tree c4e6559
parent 037ab87
author Julia <x@y.com> 1697682215
committer Julia <x@y.com> 1697682215
commit message goes here

.git/objects/c4/e6559

100644 blob e351d93 404.html
100755 blob cab4165 hello.py
040000 tree 9de29f7 lib

.git/objects/ca/b4165

print("hello world!!!!")

regular commits have 1
parent, merge commits
have 2+ parents

.git/config is a config file for the
repository. it's where git stores the
configuration for your remotes
(and other local config settings)

remote-tracking branches store
the most recently seen commit ID
for a remote branch

the staging area stores files
when you're preparing to commit

the reflog stores the history of
every branch, tag, and HEAD

hooks are optional scripts that you
can set up to run (e.g. before a
commit) to do anything you want

when git status says
"you're up to date with
origin/main", it's just
looking at this. More on
page 23.

git has global and local
settings, the local
settings are here and
the global ones are in
~/.gitconfig

the index is one of the
only things in git that
doesn't have a plain
text format. You can
see its contents with:
git ls-files --stage
(though in practice I
just use git status)

each line of the reflog has:

user
timestamp
log message

before/after commit IDs

.git/refs/remotes/origin/main

a9bbcae

.git/hooks/pre-commit

#!/bin/bash
any-commands-you-want

.git/logs/refs/heads/main

2028ee0 c1f9a4c
Julia Evans <x@y.com>
1683751582
commit: no ligatures in code

.git/index

(binary file)

.git/config
[remote "origin"]
url = git@github.com:jvns/int-exposed
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "main"]
remote = origin
merge = refs/heads/main

But the terminology around
merging is a bit confusing:

can happen if you
do any of these:

... and what the heck
is "fast forward"?

let's talk about it!

easy: no divergence ("fast-forward")

there are 3 situations when
combining branches

merging is a huge thing in git git merge checks for
these 3 situations in order

git pull needs to
combine branches too

is this the "easy" situation?
fast forward!

run the merge. Is there a
merge conflict?

done!
tell you to manually resolve
the conflict

editing
different
code

harder: diverged branches, no conflicts

editing
the same
code

you have to decide whether to
merge or rebase, but it'll succeed

git merge moves the main branch
forward to where the panda branch
is, like this:

hardest: diverged branches with
merge conflicts

you have to decide whether to
merge or rebase, AND fix a
merge conflict

will ONLY fast forward by default.
If it can't, it'll ask you to specify
if you want to rebase or merge.

runs git rebase

merge
conflicts

git merge
git rebase
git cherry-pick
git revert
git stash pop

are only created
by git merge

merge
commits

git pull

git pull --rebase

runs git merge
git pull --no-rebase

isn't the only way to
combine branches:
you can also use
git rebase!

git merge

main
panda

panda
main

git rebase

git merge

git merge --squash

there are 3 options for
combining branches

all 3 methods result in
the EXACT SAME CODE

for example, let's say we're
combining these 2 branches:

some differences are:
"lost"

the diff git shows you for
the final commit

the specific flavour of
suffering the method causes

you can keep your git
history simple:

(I love rebase though!)

pro: have 20 messy commits?
nobody needs to know!
and it's pretty simple to use

"ugh, someone squashed
their 3000-line branch
into 1 commit"

pro:

pain: pain:harder to learn
harder to undo
easier to mess up

if you mess something up,
the original commits are
still in your branch's history

pro:

when I look at histories
like this I feel dread

pain:

the commit IDs

merge conflicts happen
because both branches edited

the same lines of code

some ways to resolve merge conflicts

the weird text file finishing up

edit the weird text file by hand

use a dedicated merge conflict tool

abort the merge and rewrite the
code you were merging from scratch

<<<<<<< HEAD
def parse(input):

return input.split("\n")
||||||| b9447fc
def parse(input):

return input.split("\n\n")
=======
def parse(text):

return text.split("\n\n")
>>>>>>> a29b3cf

Git merge conflicts are confusing because they're not displayed in a consistent way:

the code from the branch you
started on is:
at the top if you merged
at the bottom if you rebased

git often won't give you the
branch name that the code
comes from

Before that, I might:

To finish, you need to run one of:

git commit (for git merge)
git rebase --continue (for git rebase)
git cherry-pick --continue (git cherry-pick)
git revert --continue (for git revert)

look at my changes with git diff main

check for unresolved conflicts with
git diff --check

might be easier if there was
a big refactor! You can do
this with git merge --abort

you can configure git so that
git mergetool opens conflicts
in your favourite tool. I like
meld on Linux.

often the easiest way!

great for package-lock.json
in node!

if the conflict is in an autogenerated file,
delete and regenerate it

go have a conversation with the other
person about what to do

the original

top

bottom

(configure
merge.conflictstyle
diff3 to get this)

gotcha: you can keep
coding during a merge

If you forget you're doing a
merge, it's easy to accidentally
keep writing code and add a
bunch of unrelated changes
into the merge commit.

I use my prompt to remind me.

merging 2 diverged
branches creates a commit

gotcha: merging isn't symmetric

Merge commits have a
few surprising gotchas!

main

git checkout main
git merge mybranch

git checkout main

git merge mybranch

git checkout mybranch
git merge main

merge mybranch into main merge main into mybranch

gotcha: git show doesn't
always tell you what the

merge commit did

tip: see what a merge did with

It'll sometimes just show the
merge commit as "empty" even
if the merge did something
important (like discard changes
from one side).

will re-merge the parents
and show you the difference
between the original merge
and what's actually in the
merge commit

git show --remerge-diff

git show --remerge-diff COMMIT_ID

A merge commit with the "wrong" first parent makes HEAD^ or
HEAD^^^^ behave in an unexpected way: ^ refers to the first parent.

these merges result in the same code, but the first parent of
the merge commit is different: it's the current commit you had
checked out when you merged.

any repository you're
pushing to / pulling from

is called a "remote"

protocols

remotes are configured
in .git/config

every remote has a name and URL
remotes can be:

hosted by GitHub/GitLab/etc.

I spent 3 hours
working on cats.py

git pull

fun fact! your coworker
totally rewrote that file!

2 days lateron your own server
just a folder on your computer

Git has 3 main protocols for remotes.
The protocol is embedded in the URL.

HTTP (I use this if I only want to pull)

local:

SSH (I use this if I need to push)

https://github.com/jvns/myrepo

file:///home/bork/myrepo

git@github.com:jvns/myrepo

example: I use 2 remotes
when contributing to open

source projects

remotes are where
the drama happens

[remote "origin"]
url = git@github.com:jvns/myrepo

branch ["main"]
remote = origin
merge = refs/heads/main

so that git knows what to push to when
you run git push or git pull

local main remote main on origin

this sets up "tracking" between

pu
ll
fro

m

he
re

main project repo
name: "origin"

my personal
GitHub fork

local
repo pull

request
push tohere

git push syntax

git push origin main

remote
name

the default name for a remote is
origin but you can name it anything

(same for git pull)

remote
branch

I like to configure

to automatically set up tracking the
first time I push a new branch

push.autoSetupRemote true

fatal: Need
to

specify how
to

reconcile divergent

branches.

fatal: Not
possible to

fast-

forward, aborting

up to date
both sides have commits that
the other doesn't, like this:

I like to fix my diverged branches
before making more commits.

git fetch just fetches the latest
commits from the remote branch

or sometimes rebase

(More about how to tell git pull
to merge/rebase on page 16!)

run git fetch origin main
run git merge origin/main

git pull origin main has 2 parts:

need to pull

need to push

DIVERGED

need to decide how to solve it

when I have a diverged
branch, I usually just run
git pull --rebase and
move on. On the next
page we'll talk about
some other options
though!

! [re
jecte

d]

main
-> ma

in

(non
fast-

forwa
rd) local main

remote main

$ git fetch
$ git status
Your branch and 'origin/main'
have diverged, and have 1 and 1
different commits each,
respectively.
(use "git pull" to merge the

remote branch into yours)

there are 4 possibilities
with a remote branch

when pushing/pulling, the
hardest problems are

caused by diverged branches

what are diverged branches?

how to tell if your branches
have diverged: git status

git fetch and git pull

get the latest
remote state first

rebase

throw away local changes throw away remote changesmerge

git pull --rebase
git push

git push --force

Many people like to configure
git config pull.rebase true to
make this the default when they
run git pull.

local main

remote main

local main

remote main

local main

remote main
orphan

git pull --no-rebase
git push

git switch -c newbranch
git switch main
git reset --hard origin/main

optional: save your changes on main
to newbranch so they're not orphaned

I only do this if there's nobody
else working on the branch.

combine the changes from both
with rebase or merge!

be REAL careful
with this one

throw out your local changes

throw out the remote changes

ways to reconcile two
diverged branches

new branch

local main

remote main

local main

remote main

reasons to throw
away changes

I'll throw away local changes if
I accidentally committed to main
instead of a new branch.

I'll throw away remote changes
if I want to amend a commit
after pushing it, and I'm the
only one working on that branch.

the "up to date" in
git status is misleading

this makes
git status weird

some old version control
systems only worked if

you were online

git works offline

my internet
went out, guess
I can't work

I want to be able
to code on a train
with no internet...

... so almost nothing in git
should use the internet
except git pull, git push,
and git fetch

$ git status
Your branch is up to date
with origin/main

This does NOT mean that you're
up to date with the remote main
branch. Let's talk about why!

we need to tell people
if their branch is up

to date... with

how?

Every remote branch has a local cache named like origin/mybranch

Git doesn't call it a cache though, it's called a "remote tracking branch"

(Git has no easy way to see when origin/mybranch was last updated)

remote name

only updated on git pull,
git push, git fetch

git push origin mybranch
updates this

branch name

local branch cache remote branch

mybranch origin/mybranch origin mybranch

people are always saying: commits in the history of
a branch / tag

branches and HEAD

"lost" commits

don't worry! it's
impossible to lose
your work in git!

my lost work
says otherwise

but some parts of git are
MUCH safer than others

BUT there's a history
of all the changes in
the reflog

the reflog is NOT easy to
use but at least it's there

never change

change ALL THE TIME changes ALL THE TIME git stash drop deletes
entries forever

... but you can technically get them
back by scrolling up in your terminal
to find the commit ID (if you're lucky)
or by using git fsck (if not)

(I only really use git stash to throw
away work)

no history

just gotta be careful

you can ALWAYS
use the commit ID
to get your work
back!

never change, except...

they'll eventually get deleted
by git's garbage collection

they're hard to find

(usually not for a few months though)

staging area the stash

git has no undo most git commands move the
current branch forwards

--hard: the danger option

git reset can move the
current branch anywhere

problems reset can causehow git reset works

instead, git has a single
dangerous command for undoing:

this makes it possible to undo,
but you can also really mess
up your branch

bac
kw

ard
s! forwards!

"sideways"!

git reset $COMMIT_ID

git reset --hard $COMMIT_ID

Keeps all the files in
your working directory
exactly the same.

it's easy to "lose" commits,
especially if you move a
branch backwards

if you use --hard, you can
permanently lose your
uncommitted changes

finds the commit ID
corresponding to HEAD^ (for
example a2b3c4)

forces your current branch
to point to a2b3c4

unstages all changes

Throws away all your
uncommitted changes.
Useful but dangerous.

(though rebase is an exception)

uncommit
git commit

git merge

git pull
git reset

unmerge
unrebase

unadd

there's no

git reset HEAD^

a reflog is a log of
commit IDs

some differences
between git log main
and git reflog main

how to use the reflog

which reflog to use?

git fsck:
the last resort

run git reflog

sadly stare at output until
you find a log message
that looks right

look at the commit

repeat until you find the thing

If a commit isn't in the reflog
(for example if you "lost" it with
git stash drop), there's still hope!

You can use git fsck to list every
commit ID that's unreferenced.

it's the reflog for HEAD

every single commit you've
ever had checked out

reflog entries older than 90 days
might get deleted by git gc

the reflog can show you
where your branch was before
a rebase. git log can't
the reflog isn't shared between
repositories. git log is.
if I'm looking at the reflog,
I'm having a bad day

has everything but very noisy

just the history for that
branch, might be less noisy

The main two I use are:
I use the reflog to find "lost"
commits: it contains every commit
ID that the branch/tag/HEAD has
pointed to.

git reflog

git reflog BRANCH

I've never done this though: I try
to avoid getting into this situation.

use something like

to put the commit on a branch

or

git show $COMMIT_ID

git log $COMMIT_ID

git reset --hard $COMMIT_ID

git branch $NAME $COMMIT_ID

the reflog kind of sucks

if you delete a branch,
git deletes its reflog

reflog entries don't correspond
exactly to git commands you ran

But it's the best we have.

if you drop a stash entry, you
can't use the reflog to get it back

As always, my favourite way to learn more about git is to experiment
Make a new repository for testing! Make branches in it!
Try a rebase! See what happens!

Pairing: Marie Claire LeBlanc Flanagan

and thanks to all 66 beta readers

Cover illustration: Vladimir Kasikovic

Technical review: James Coglan
Copy editing: Gersande La Fleche

There are also a million tools that can make git easier, for example:

This zine comes with a printable cheat sheet! It's here:
https://wizardzines.com/git-cheat-sheet.pdf

a shell prompt. I use the one built into fish

an editor integration. I use vim-gitgutter

a merge conflict tool. I use meld

tools to display diffs, like delta

acknowledgements

a GUI, like lazygit or GitUp on Mac OS

there are TONS of
great tools out there.
try some out to see
what's right for you!

