

about this zine

If you find git confusing, don't worry! You're not alone.
It's VERY normal to be perplexed by it even if you've been using git for a long time.

"you're up to date with origin/main”
doesn't actually mean you're vp to
date with the remote main branch...

fast-forward failed?
detached HEAD state??
references??? what?

silly git, you can't faze
me with your arcane
error messages! 1 Know
exactly what to do.

to

Once you know what's going on under the hood, you can get yourself out of any git mess.

|
GO U | let's go learnt | Lo v

foble of contents

@~ commits
meet the commit.............
inside the commit...........
the diff algorithm..........
the staging area.............

¥ branches
meet the branch............ &
what's o branch?............ 4

knowing where you are..... 10
detached HEAD state....... 11

K|Oo O, -FE

references..12
lost commits....c.............. 13
Quinside .giT.................. 1415

2 merging
meet the merge .. e
combining d-vergeo\ bromches....
merge conflicts A
merge commits.

& remotes
meet the remote
diverged remote branches.
fixing diverged remotes.........
remote branch caching..........

dealing with disasters

losing your work
gi’r reset

the reflog....................

.16

17

.18

19

20
21
22
23

24
25
26

meet the commit

L.'

commits never change

once you've made a commit,
it's set in stone:

—»the files in it never change

—» its diff never changes

—» its history never changes

—» the message/author never
change

commit hashes

commits never change because
their 1D is calculated from their
contents

message ————
avthor —7

timestamp

every file
parent(s) \,
*-»353®a42. .

you can think of commits
as a pile of diffs

T < current
if you combine all the

diffs together, you'll

l get the current state
ject!
of the project!
N (not how Git works, but
! a VERY vseful way to

START | think about commits!)

you can also think of commits
as a pile of snapshots

current q this is how Git is
implemented!
[]
is git saving a NEW
COPY, EVERY TIME??
|

®o
not quite! it has

%-

some tricks!
on the next page!

diffs are calevlated
from snapshots

— the diff is the
"’ difference between a

heg what's the
duff for 3530a427

ooh let me cq(culafe °
that REALLY FAST'

commit and its parent

things git can do
with a commit

B9 oet the files in the
commit (like git checkout)

+ calevlate the diff from its parent
(like git show)

Y/ merge it with another commit
(like git merge)

§ look at its parents, grandparents,
ete. (like git log)

inside the commit

you can see for
yourself how git is
storing your files!

You jusf need one
command: git cat-file -p

First, get a commit ID.
You can get one from git log

(D read the commit

$ git cat-file -p 3530a4

tree = dicectory ID

parent 56cfdc

I just use git cat-file
for fun and learning,
never to get things done

author Julia <julia@fake.com> 1697682215 -0500
committer Julia <julia@fake.com> 1697682215 -0500

commit message goes here

(@ read the directory

$ git cat-file -p 22b920
100644 blob 4fffb2 .gitignore
100644 blob e351d9 404.html
100644 blob cab416 Cargo.toml
100644 blob (fe442d) hello.html
040000 tree 9de29f\ src

file ID
(IDs are actually 40 characters)

@ read a file

$ git cat-file -p fed42d <
<IDOCTYPE html>
<html lang="en">
<body>
<h1>Hello!</h1>
</body>
</html>

| —

and we're done!

—fed442d is the shal hash of the
contents of the file. It's called
a "blob id". Commit and tree IDs
are hashes too.

Using a hash to identify each file
is how git avoids duplication: if the
file's contents don't change, the
hash won't change, so git doesn't
need to store a new version!

the diff algorithm

6

git is CONSTANTLY
showing you diffs

git show COMMIT_ID
here's
the diff! 3i+

and it makes it seem like
git thinks in terms of diffs

have you ever noticed
your git diffs
don't make sense?

" deleted. ..
J added. ..

3?*

ooo @

X

but 1 didn't
DELETE that file,
I MOVED it

in gif, moving a file is the
same as deleting the old one
and adding the new one

git mv old.py new.py
~
| same
v
cp old.py new.py

git rm old.py
git add new.py

oit is just guessing
about your intentions

git mv old.py new.py
git commit

well the OLD version has old.py
and the NEW version has new.py
and they have the same contents...

so I guess you moved it

diff is an algorithm
the algorithm:
— takes 2 versions of the code

— compares them

— tries fo summarize it in a
human readable way

(but it doesn't always do a great job)

git has many
diff algorithms

I've been trying out
histogram becavse 1 don't
like how the default

algorithm displays the diff
when 1 rearrange code

how to try it out:
git diff --histogram

the staging area

oit has a 2-stage commit process

® tell git what you want to

cfaoge (git add, git rm,
git mv, ete.)

@ make the commit with
git commit

unstaged
changes

untracked
files
git add

l git commit

Y [committed] 9

gif uses 3 terms
interchangeably for the

staging area @S?

® staged (like --staged)
® cache (like --cached)

@ index

it's fotal chaos but they're
all the same thing

(like --keep-index)

tip: you can vse git add -p
to commit only certain
parts of a file

000

I only want fo
commit my actual
changes, not all the
random debugging
code 1 put in

gotcha: git diff only
shows unstaged changes

You can vse:

—git diff HEAD fo see
all changes you
haven't committed

—git diff --cached to see
staged changes

gotcha: git commit -a
doesn't auvtomatically
add new files

1 CONSTANTLY forget
to add new files and
then get confused

about why they didn't
get committed

meet the branch

g

theoretically you could
use git without branches

You could keep track of your
commit IDs manvally:

oo o
hmm, what was I working
on? oh yes, a38b997!

But most people use branches.

every branch has 3 things

—a name (like main)

—a lafest commit (like 2e9ffc)

-+ a reflog of how that branch

has evolved over fimegpage 26

Branches also sometimes have
a corresponding remote branch
which they "track".

branches are core to how
oit stores your work

If your commits are "(osf",\ noe
(not on a branch): PI%

W they'll become incredibly
difficult to find

I git's garbage collection will
eventually delete them

the only difference
between the main branch
and any other branch is

how you treat them

For example: it's common to
never commit to main directly,
and instead commit to other
branches which you merge into
main when you're done.

all changes to a branch
are recorded in its reflog

The reflog records every
rebase, amended commit, pull,
merge, reset, commit, ete. You
can look at the reflog like this:

git reflog BRANCHNAME

reflog stands for "reference log"
(not re-flog)

git will let you do literally
anything with a branch
—» when you push/pull a branch,
the local branch name
doesn't have to match the
remote branch name
—» You can remove commits from a
branch with git reset

Git often won't protect you
from messing up your branch!

what's a branch?

You can think about a Git branch in 3 different ways:

(just the commits that
"branch" off

This is how I usually think about
branches: armadillo branches off main

main armadillo

\I think of the
armadillo branch as
these 2 commits

How this shows up in git:

Git DOESN'T KNOW that armadillo is
branched off of main: for all it
knows, main could be branched off of
armadillo! You need to tell it when
you merge or rebase, for example:

git checkout main
git merge armadillo

(2) every previous commit

Even though git doesn't treat the
main branch in any special way, 1
think of main differently from
other branches.

main armadillo

1 think of my _
main branch

as these 4 w
commits

How this shows up in git:

It's what git log BRANCHNAME shows
you! How git log main works:
main e— start here

0
parent l
o

parent l

o
Y

@jus’r the commit at the end

This is how branches are actually
implemented in git.

main armadillo

~ the latest
commit on
the branch

How this shows up in git:

It's how branches are stored
internally: a branch is fundamentally
a name for a commit 1ID.

.git/refs/heads/main ¢ Pranch name

a276f62
o

T
ID of the latest commit on the branch

knowing where you

are |0

many git disasters are
cavsed by accidentally
running a command while on
the wrong branch...

St comit)

®°0 (UGH I didn't mean
to do that on main

.. or by forgetting you're
in the middle of a
multistep operation

PX-X-)
la (a la jusf
writing code

OMG 1 FORGOT 1 WAS
IN THE MIDDLE OF A

oo o4

MERGE CONFLICT

I always keep track
of 2 things

® am I on a branch, or am 1
in detached HEAD state?
Tnext page!

@ am 1 in the middle of some
kKind of multistep operation?
(rebase, merge, bisect, etc.)

1 Keep my current branch
in my shell prompt

~/work/homepage (main) $

to me it's as important as
knowing what directory I'm in

git comes with a script to do this in
bash/zsh called git-prompt.sh, but
there are tons of ways to get this
info (run git status a lot! use a
GUI! use a different shell prompt!)

decoder ring for the default git shell prompt

(nain) «————oNn a branch, everything is normal

((2e832b3...))
((v1.0.13))

(main|MERGING)
(main|REBASE 1/1)
(main|CHERRY-PICK)
(main|BISECTING)

the double brackets (()) mean "detached HEAD state"
this prompt can only happen if you explicitly
git checkout a commit/tag/remote-tracking branch

in the middle of a multistep operation:
merge/rebase/cherry-pick/bisect

detached HEAD state ||

how git knows what your
current branch is: .git/HEAD

.git/HEAD is a file where git
stores either:

(® a branch name: the current branch

® a commit 1D
this means you don't have

a current branch. git calls
this "detached HEAD state"

by itself, .git/HEAD being
a commit 1D is okay

it's a great way to
look at an old version
 of your code!

1 don't do it often,
\, buf it's super useful!

git does it internally
during a rebase!

the only problem is that
new commits you make
can get "lost!

“page 12
main
new commit
will go here
P danger! it won't be
";-iE Ap oM any branch!

ways you can end up in
detached HEAD state

You will end vp in detached
HEAD state if you checkout:
—~a tag
$ git checkout v1.3
- a remote-tracking branch
$ git checkout origin/main
<a commit ID
$ git checkout a3ffab9

if you accidentally create

commits in detached HEAD

state, it's SUPER easy fo
avoid losing them

jusf create a new branch!

git checkout -b oops

(you can also create a branch
with git switch -c if you prefer)

oit has a little language
for referring to commits

the current commit HEAD
the previous commit HEAD*
3 commits ago HEAD***
3 commits ago HEAD~3

The full documentation (with
main@{3 days ago} & more) is at:
man gitrevisions

references

1L

git often uses the term
‘reference" in error messages

$ git switch asdf

fatal: invalid reference: asdf @

$ git push

To github.com:jvns/int-exposed

'reference" often
jusf means "branch"

branch name
fatal: invalid «wefereree: asdf

branches
error: failed to push some e+ to

'github.com: jvns/int-exposed’

00

! [rejected] main -> main in my experience, it's:
error: failed to push some refs to 4% "branch
'github.com: jvns/int-exposed’ '\ 39, “tag"

"ref" and "reference" 3% "HEAD"

mean the same thing

0.01% something else

"reference" is an umbrella term

well, T COULD check if the thing
we failed to push is a branch or
tag or what, and customize the
error message based on that...

seems complicated, let's

Just print out "reference"

5 types of references

References are files. They're almost all in .git/refs.
Here's every type of git reference that I've ever used:

HEAD:

branches:

tags:
remote-tracking
branches:
stash:

.git/HEAD

.glt/refs/heads/$BRANCH4—“L—_ contain a commit 1D,
.git/refs/tags/$TAG(———xﬂ but the way that
.git/refs/remotes/$REMOTE/$BRANCHe— commit 1D is used

depends on what type
.git/refs/stash I_ of reference it is

all of these files

(stash is a weird reference: when you run git stash, git creates a "temporary" commit.
Git stores the commits you have stashed in the stash's reflog: .git/logs/refs/stash)

oit's garbage collection
uses references to decide
which commits to delete
the algorithm is:

® find all references, and every
commit in every reference's reflog

@ find every commit in the history
of any of those commits

@ delete every commit that wasn't found

oit's garbage collection won't delete
commits for at least 2 weeks by default

lost commits

13

commits in git are

usvally saved forever

But even if git still has your
commits, they're not always
easy fo find.

Some ways commits get "lost":

— git commit --amend
—» git rebase

— deleting an unmerged branch
—» git stash drop

the three levels
of losing commits

annoying: the commit isn't in
the history of any branch/tag,
but it's relatively easy to find

nightmare: you need to search
every single commit to find it

disaster: it's been deleted

how commits can get lost:
git commit --amend

before: fsfo!
fix color .
[parent H }—maln branch
buug
after:
¢ fix color)e now it's
paren buug "lost™

fix color

«main branch
bug

how commits can get lost:

git rebase
before:
«———main branch
feature branch
after:

main branch

(M v }{»)-feature branch
n ‘——now these two

are "lost"

how commits can get lost:
git stash drop

before: Lnain branch

D—D—@ «stashed commit

after: .
Ina in branch

D‘D‘@* now it's
"lost"

stash is the only way I've seen the
"nightmare" situation happen.

you can find
lost commits

I find it very comforting to know
that git Keeps my lost commits
around. How to find them:

annoying: use the refloge P8¢
nightmare: vse git fsck

disaster: impossible (but this
has never happened to me)

inside .git

Here's an overview of the main parts of the .git folder!
.git/HEAD

HEAD is a tiny file that just contains

the name of your current branch — =%

a branch is stored as a tiny file
that just containe a commit ID. It's ==
stored in a folder called refs/heads.

a commit is a small file containing
its parent(s), message, free, and
avthor

trees are small files that list the
permissions, type, 1D, and name of
every file in a directory. The files
in it are called "blobs"

=

blobs are the files that contain
your actual code

ref: refs/heads/main

.git/refs/heads/main

75bbae4 «— (actually 40 characters)

.git/objects/75/bbae4

tree c4e6559

parent 037ab87

author Julia <x@y.com> 1697682215
committer Julia <x@y.com> 1697682215
commit message goes here

.git/objects/c4/e6559

100644 blob e351d93 404.html
100755 blob cab4165 hello.py
040000 tree 9de29f7 1lib

.git/objects/ca/b4165

print("hello world!!!!")

I

Don't worry if you don't understand
all this yet! We'll get to it.

HEAD can also be a
commit ID, that's called
"detached HEAD state"

« fTags are in refs/tags,
the stash is in refs/stash
More on page 12.

the files in /objects/ are
all compressed, the best

& way to see them is with
git cat-file -p HASH

®_regular commits have 1
parent, merge commits
have 2+ parents

if you recognize 644 and
755 as unix permissions:
beware that they're
super restricted! only
644 and 755 are allowed

storing a new blob with
every change can get big,

« so git gc periodically
packs them for efficiency
in .git/objects/pack

the reflog stores the history of
every branch, tag, and HEAD

remote-tracking branches store

the most recently seen commit ID

for a remote branch

.git/config is a config file for the
repository. it's where git stores the

configuration for your remotes
(and other local config settings)

hooks are optional scripts that you

can set up to run (e.g. before a
commit) to do anything you want

the staging area stores files
when you're preparing to commit

.git/logs/refs/heads/main

2028ee0 c1f9a4c

Julia Evans <x@y.com>
1683751582

commit: no ligatures in code

.git/refs/remotes/origin/main

a%9bbcae

.git/config

[remote "origin"]

url = git@github.com:jvns/int-exposed

fetch = +refs/heads/x:refs/remotes/origin/*
[branch "main"]

remote = origin

merge = refs/heads/main

.git/hooks/pre-commit

#!/bin/bash
any-commands-you-want

.git/index

(binary file)

15

each line of the reflog has:
«— before/after commit IDs
< user

« fimestamp

«— log message

when git status says

& "ou're up to date with
origin/main", it's just
looking at this. More on
page 23.

it has global and local
« settings, the local
settings are here and
the global ones are in
~/.gitconfig

the index is one of the
only things in git that
doesn't have a plain
text format. You can
see its contents with:
git 1s-files --stage
J(fhough in practice 1

jusf use git status)

meet the merge 16

merging is a huge thing in git there are 3 sitvations when git merge checks for
combining branches these 3 situations in order
But the terminology around (D easy: no divergence (“fast-forward") (is this the "easy" situation?

es
a fast forward!

merging is a bit confusing:]main]no {
+—panda N
isn't the only way fo . !‘-‘ Ep - @ run the merge. 1Is there a
g g combine branches: git merge moves the main branch merge conflict?

you can also use forward to where the panda branch Ln_i
git rebasel is, like this: LYeS donel
) &2 F - "N ® tell you fo manvally resolve

i,\\ merge ﬂ\ can hcxppen if Yyou '\Pqndq the conflict
conflicts do ;i';ﬁ moe{;gZhese. @ harder: diverged branches, no conflicts

git rebase [#] e~ edifing

git cherry-pick |9 %] different git pull needs to

git revert @|¢ code bi b h +

i combine orancnes 1oo
git stash pop you have to decide whether to I
" . e0 sy mode
meroe are only created merge or rebase, but it'll succeed ng: pull Ve
commits by git merge @ hardest: diverged branches with will ONLY fast forward by default.
merge conflicts If it can't, it'll ask you fo specify
3] « editing if you want fo rebase or merge.
the same
... and what the heck E2gEi (D] < code git pull --rebase
is "fast forward"? i
you have to decide whether to !.'UhS git rebase
let's talk about it! merge or rebase, AND fix a git pull --no-rebase

runs git merge

merge conflict

combining diverged branches 'F

there are 3 options for
combining branches

for example, let's say we're
combining these 2 branches:

q— branch 1
127\ ¢— branch 2.

@git rebase e
A
TH ~, -

1@z i+ "lost"

(@ git merge
(]
9] HE
@git merge --squash
[*]
MgEl

ey

€]

all 3 methods result in
the EXACT SAME CODE

some differences are:

* the diff git shows you for
the final commit

* the commit 1Ds

* the specific flavour of
suffering the method causes

pro: you can Keep your git
history simple:
D-b-0d-D —0-D

pain: harder to learn A
harder to undo A
easier to mess up A

(I love rebase though!)

pro: if you mess something up,

the original commits are
still in your branch's history

pain: when 1 look at histories
like this 1 feel dread '\

pro: have 20 messy commits?
nobody needs to know!
and it's pretty simple to use

pain: "ugh, someone squashed
their 3000-line branch
info 1 commit" Y

MERGE CONFLICTS A X A |3

merge conflicts happen some ways to resolve merge conflicts
because both branches edited often the easiest way!
'l'he same “nes O'F COde O edif fhe \A/eird fexf fi(e bg hqnd "‘—’-/_SOU can configure gd' so that

@ vse a dedicated merge conflict tool e 81t mergetool opens conflicts
in your favourite tool. 1 like

o ?‘."? ® abort the merge and rewrite the meld on Linux.
o .
v code you were merging from scratch
° B0) J S 9’ng) might be easier if there was
.. g ® if the conflict is in an fxu’rogenerafed file, 4 big refactor! You can do
MERGE delete and regenerate it this with git merge --abort
ALGORITHM ® go have a conversation with the other great for package-lock.json
person about what to do in node!
the weird text file finishing up
Git merge conflicts are confusing because they're not displayed in a consistent way: To finish, you need fo run one of:
<<<<K<<< HEAD
‘,'\ the code from the branch you def parse(input): & fOP git commit (for git merge)
started on is: return input.split(”\n") git rebase --continue (for git rebase)
+at the top if you merged (111111 b9447fc git cherry-pick --continue (git cherry-pick)
-»at the botfom if you rebased . . git revert --continue (for git revert)
def parse(input): the oriainal
1 git often won't give you the : input.split("\n\n") — 19!
" branch name that the code return 1input.spli nn (configure Before that, I might:
comes from sE===== merge.conflictstyle & + #h eit di .
000 def parse(text): diff3 to get this) look af my changes with g%t dlff. main
turn text. split("\mn") # check for unresolved conflicts with
return text.spLitlimnt) el pottom git diff --check
>>>>>>> a29b3cf

merge commits

19

merging 2 diverged
branches creates a commit

git checkout main
git merge mybranch

*) main
=
@3 merge
commit{

Merge commits have a
few surprising gotchas!

gotcha: merging isn't symmetric

these merges result in the same code, but the first parent of
the merge commit is different: it's the current commit you had

checked out when you merged.

merge mybranch info main

git checkout main

git merge mybranch

merge main into mybranch

git checkout mybranch
git merge main

A merge commit with the "wrong" first parent makes HEAD* or
HEAD**** behave in an unexpected way: * refers to the first parent.

gotcha: you can keep
coding during a merge

If you forget you're doing a
merge, it's easy to accidentally
Keep writing code and add a
bunch of unrelated changes
intfo the merge commit.

I use my prompt to remind me.
&pase 10

gotcha: git show doesn't
always tell you what the
merge commit did

It'll sometimes just show the
merge commit as "empty" even
if the merge did something
important (like discard changes
from one side).

tip: see what a merge did with

git show --remerge-diff
git show --remerge-diff COMMIT_ID

will re-merge the parents
and show you the difference
between the original merge
and what's actually in the
merge commit

meet the remote

20

any repository you're
pushing to / pulling from
is called a "remote"
remotes can be:
% hosted by GitHub/GitLab/etc.
% on your own server

just a folder on your computer

git push syntax
(same for git pull)

git push origin main

remote remote
name branch

the default name for a remote is
origin but you can name it anything

remotes are where
the drama happens

0°°L1 spent 3 hours
working on cats.py

2 dags later

fun fact! your coworker

i
totally rewrote that file! 3

example: 1 use 2 remotes
when contributing to open
source projects

1 like to configure

push.autoSetupRemote true

to avtomatically set vp tracking the
first time 1 push a new branch

&
[\ . teet
N e | main project repo
S :y name: "origin"

local

repo)pu(l
m my personal request
fere 70 | GitHub fork

remotes are configured
in .git/config

every remote has a name and URL

[remote "origin"]
url = git@github.com:jvns/myrepo

branch ["main"]
remote = origin
merge = refs/heads/main

this sets up "tracking" between

local main «» remote main on origin
so that git Knows what to push to when
you run git push or git pull

protocols

Git has 3 main protocols for remotes.
The protocol is embedded in the URL.

HTTP (I use this if 1 only want to pull)
https://github.com/jvns/myrepo

SSH (I vse this if 1 need to push)
git@github.com: jvns/myrepo

local: file:///home/bork/myrepo

diverged remote branches 2]

when pushing/pulling, the what are diverged branches? there are 4 possibilities
hardest problems are with a remote branch

caused by diverged branches both sides have commits that
the other doesn't, like this: ® vp to date D“EJ"D:;::O‘}E

#-| local main -
E) remote main @ need to pull o —O—0-RemotE

'Rﬁﬁo‘\f
I like to fix my diverged branches @ need to push o _p——o-roan

fatal: Need to
specify how to
reconcile divergent

~ L before making more commits.
D D i\ -REMOTE
® IVTERGE N D—D<2_D.LO<AL
how to tell if your branches git fetch and git pull need to decide how to solve it

have diverged: git status .
git fetch just fetches the latest

get the latest commits from the remote branch

remote state first

$ git fetche

when I have a diverged

$ git status git pull origin main has 2 parts: branch, 1 usually just run
Your branch and 'origin/main’ :

. .. . git pull --rebase and
have Ydiver ed® and have 1 and 1 ©run git fetch origin main

move on. On the next
page we'll talk about
some other options
though!

@run git merge origin/main

different commits each,
or sometimes rebase

respectively.

(use "git pu}l" to merge the (More about how to tell git pull
remote branch into yours) to merge/rebase on page 16!)

fixing diverged remoteg

12

ways to reconcile two
diverged branches
#| local main
=]
remote main
—»combine the changes from both
with ret%gse or mgge! (like on page 1)

— throw out your local changes ®

—= throw out the remote changes @

X be REAL careful
with this one

reasons to throw
away changes

= 1I'll throw away local changes if
1 accidentally committed to main
instead of a new branch.

—TI'll throw away remote changes
if I want to amend a commit
after pushing it, and I'm the
only one working on that branch.

(D rebase

git pull --rebase
git push

local main
n m #* remote main

Many people like to configure
git config pull.rebase true to
make this the default when they
run git pull.

(@) merge

git pull --no-rebase

git push
a local main
n m remote main

() throw away local changes

optional: save your changes on main
to newbranch so they're not orphaned

git switch -c newbranch -
git switch main
git reset --hard origin/main

| new branch
@— local main

remote main

@) throw away remote changes
(DANGER V)

git push --force

local main
.
u m remote main
;%E orphan

I only do this if there's nobody
else working on the branch.

remote branch caching

13

the "up to date" in
git status is misleading

$ git status
Your branch is up to date
with origin/main

T

This does NOT mean that you're
up to date with the remote main
branch. Let's talk about why!

some old version control
systems only worked if
you were online

git works offline

I want to be able
to code on a train
with no internet...

my internet
went out, guess
I can't work

... so almost nothing in git
should use the internet

except git pull, git push,
and git fetch

git developers

this makes
git status weird

o0 (we need fo tell people
if their branch is up
to date.. with

NO INTERNET?

(<]

solution: CACHING
T —_—

branch name

4 4
Every remote branch has a local cache named like origin/mybranch

remote name

Git doesn't call it a cache though, it's called a "remote tracking branch"

local branch cache remote branch

mybranch | |origin/mybranch| |origin mybranch |

tonly updated on git pull, Lgit push origin mybranch
git push, git fetch updates this

(Git has no easy way to see when origin/mybranch was last vpdated)

losing your work

24

people are always saying:

don't worry! it's
impossible fo lose
your work in git!

(&)
my lost work
says otherwise

but some parts of git are
MUCH safer than others
=

%

commits in the history of
a branch / tag

[‘5 never change

(you can ALWAYS
use the commit 1D
to get your work

"lost" commits
fel never change, except...

A they're hard to find

A they'll eventually get deleted

by git's garbage collection
“page 12°13

(usvally not for a few months though)

branches and HEAD

?_‘_] change ALL THE TIME

@ BUT there's a history
of all the changes in
the reflog

the reflog is NOT easy to
use but at least it's there

staging area

™ changes ALL THE TIME

% ro history

W just gotta be careful

the stash

git stash drop deletes
entries forever

... but you can technically get them
back by scrolling up in your terminal
to find the commit ID (if you're lucky)
or by using git fsck (if not)

(I only really use git stash to throw
away work)

reset

25

git has no undo

unadd

/ uncommit

there's no — unmerge
unrebase

instead, git has a single

dangerous command for undoing:

>git reset<
7 ~

most git commands move the
current branch forwards

Y
git commit o4
git merge D—D@
git pull OO0

(though rebase is an exception)

oit reset can move the
current branch anywhere

LS

"sideways"!

this makes it possible to undo,
but you can also really mess
up your branch

how git reset works

git reset HEAD” :

(finds the commit 1D
corresponding to HEAD* (for
example a2b3c4)

(2 forces your current branch
to point fo a2b3c4

@ unstages all changes

--hard: the danger option

git reset $COMMIT_ID
Keeps all the files in
your working directory
exactly the same.

git reset --hard $COMMIT_ID
Throws away all your

uncommitted changes.
Useful but dangerous.

problems reset can cause

{Paag 13
W it's easy to "lose" commits,
especially if you move a
branch backwards

W if you use --hard, you can
permanently lose your
uncommitted changes

reflog

26

a reflog is a log of
commit IDs
I vse the reflog to find "lost"
commits: it contains every commit
1D that the branch/tag/HEAD has
pointed to.

how to use the reflog
@ run git reflog

@ sadly stare at output until
you find a log message
that looks right

@ look at the commit

git show $COMMIT_ID
git log $COMMIT_ID

@ repeat until you find the thing

@use something like
git reset --hard $COMMIT_ID or

git branch $NAME $COMMIT_ID
to put the commit on a branch

some differences
between git log main
and git reflog main

reflog entries older than 90 days

*

%

*

might get deleted by git gc

the reflog can show you

where your branch was before
a rebase. git log can't

the reflog isn't shared between
repositories. git log is.

if I'm looking at the reflog,

I'm having a bad day

which reflog to use?

The main two 1 use are:

git reflog
- every single commit you've
ever had checked out
— has everything but very noisy
— it's the reflog for HEAD

git reflog BRANCH

- ~é)uS'l' the history for that
ranch, might be less noisy

"
la)

)
~

[}

the reflog kind of sucks

if you delete a branch,
oit deletes its reflog

if you drop a stash entry, you
can't use the reflog to get it back

* reflog entries don't correspond

exactly to git commands you ran

But it's the best we have.

git fsck:
the last resort

If a commit isn't in the reflog
(for example if you "lost" it with
git stash drop), there's still hope!

You can vse git fsck to list every
commit ID that's unreferenced.

I've never done this though: T try
to avoid getting info this situation.

Thanks for reading

As always, my favourite way to learn more about git is to

Make a new repository for testing! Make branches in it!
Try a rebase! See what happens!

There are also a million tools that can make git easier, for example:

% a shell prompt. T use the one built into fish
® an editor integration. I use vim-gitgutter

there are TONS of
great tools out there.
try some out to see

« a merge conflict fool. 1 use meld
what's right for you!

% tools to display diffs, like delta
« a GUI, like lazygit or GitUp on Mac 0S

This zine comes with a printable cheat sheet! It's here:
https://wizardzines.com/git-cheat-sheet.pdf

acknowledgements

Cover illustration: Vladimir kagikovié
Pairing: Marie Claire LeBlanc Flanagan
Technical review: James Coglan

Copy editing: Gersande La Fléche

and thanks to all 66 beta readers

@ this?
more ot
* Wizaordzines.com #

